[LAD] Floating point Denormals: C++ and Waf

Martin Homuth-Rosemann linuxaudio at cryptomys.de
Thu Aug 2 18:31:28 UTC 2012


Am 02.08.2012 17:13, schrieb Charles Henry:
> Hi Martin,
>
> Can I pick your brain on how this works?
>
> My biggest question is why to use the typedef__u32__attribute__ line
> inside an inline function.  Don't you only have to do this once?  If
> so, wouldn't you place that line outside the function?
You're right - but the compiler didn't complain.
>
> On Thu, Aug 2, 2012 at 7:39 AM, Martin Homuth-Rosemann
> <linuxaudio at cryptomys.de>  wrote:
>
>> static inline float daz( float f )
> If we remove the "static" scope of this function, could we make a
> header and re-use this code efficiently?
>
>> {
>>    // define an aliasing type to perform a "reinterpret cast"
>>    typedef __u32 __attribute__ (( __may_alias__ )) u32bit;
>>    if ( *( (u32bit*)&f )&  0x7F000000 ) // E>  1 : normal.
> Is there a 64-bit version of the same?  This appears to work with a
> 32-bit unsigned int as a pointer, meaning that it's applicable to
> 32-bits.  How does a "reinterpret cast" work?
>
> What this does is check the exponent is non-zero, right?  Doesn't this
> also depend on the mantissa?  for example, if the mantissa is 2^24-1
> and the exponent is zero, is that number still a denormal?
No, it checks if the exponent is >1 because we have 
SEEE.EEEE.EMMM.MMMM.MMMM.MMMM.MMMM.MMMM
It's a special function to prevent denormals in recursive filters of a 
reverb in my organ project connie. As my coeficients are .5 < coef < 1 
the operation
out = in * coef;
may create denormals (E=0) if E is 1. So the code above changes to
out = daz( in ) * coef;

>>      return f;
>>    else // E<= 1 : zero or _almost_ denormal
>>         // (may become denormal with next operation)
>>      return 0.0;
>> }
>>
>> Ciao, Martin
> Thanks for the code--any further explanation would be enlightening.
>
> Chuck

As I use this function quite often in reverb it's coded as inline to 
avoid the call/return overhead:


/*****************************************************************************
  *
  *   reverb.cpp
  *
  *   Simulation of an electronic organ like Vox Continental
  *   with JACK MIDI input and JACK audio output
  *
  *   Copyright (C) 2009,2010 Martin Homuth-Rosemann
  *
  *   This program is free software; you can redistribute it and/or modify
  *   it under the terms of the GNU General Public License as published by
  *   the Free Software Foundation; version 2 of the License
  *
  *   This program is distributed in the hope that it will be useful,
  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  *   GNU General Public License for more details.
  *
  *   You should have received a copy of the GNU General Public License
  *   along with this program; if not, write to the Free Software
  *   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 
02110-1301 USA.
  *
  ******************************************************************************/


#include <stdlib.h>
#include <ctype.h>
#include <math.h>
#include <linux/types.h>

#include "reverb.h"

// modified JCRev (with output feedback)
// -> ccrma.stanford.edu/~jos/pasp/Schroeder_Reverberator_called_JCRev.html
// JCRev uses 3 all pass filtes in series
// and 4 parallel feed forward comb filters
// to replace the FFCF with IIR filters uncomment next line

// #define IIR

// three all pass filters
// ======================
// length of delay line
#define NA1 1051
#define NA2  337
#define NA3  113
// gain
#define GA1 0.707
#define GA2 0.707
#define GA3 0.707
// delay lines
static float ap1[NA1];
static float ap2[NA2];
static float ap3[NA3];
// position in delay line
static int ia1;
static int ia2;
static int ia3;


// four comb filters
// =================
#ifndef IIR
// length of delay line
#define NC1 4799
#define NC2 4999
#define NC3 5399
#define NC4 5801
#else
// length of delay line
#define NC1 479
#define NC2 499
#define NC3 539
#define NC4 581
#endif
// delay line
static float cf1[NC1];
static float cf2[NC2];
static float cf3[NC3];
static float cf4[NC4];
// position in delay line
static int ic1;
static int ic2;
static int ic3;
static int ic4;

//
// DENORMALS ARE EVIL
//
// 32 bit float
// SEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMM
// E = 0, M != 0 -> denormal
// processing denormals uses lot of cpu.
// problem: an IIR feeds back 0.7*y.
// a value > 0 will decay until the smallest float is reached:
// 00000000000000000000000000000001
// multiplying with 0.7 and rounding (to nearest, default) gives again:
// 00000000000000000000000000000001
// this value circulates forever and consumes lot of cpu cycles :(
// even with "round to zero" - set in main() -
// it takes about 5 seconds until the denorm fades to zero...
//
// solution:
// "it's better to burn out than to fade away"
//
// denormals are zero
static inline float daz( float f )
{
   // define an aliasing type to perform a "reinterpret cast"
   typedef __u32 __attribute__ (( __may_alias__ )) u32bit;
   if ( *( (u32bit*)&f ) & 0x7F000000 ) // E > 1 : normal.
     return f;
   else // E <= 1 : zero or _almost_ denormal
        // (may become denormal with next operation)
     return 0.0;
}



//
// reverb for one sample
//
float reverb( float xin )
{
   static float yout = 0.0;
   static float xv0, xv1, yv0, yv1;
   float x, y;

   // additional feedback
   x  = daz( xin/8 + yout/64 );

// three all pass filters
   y = ap1[ia1];
   ap1[ia1] = daz( GA1 * (x + y) );
   x = y - x;
   if ( ++ia1 >= NA1 )
     ia1 = 0;

   y = ap2[ia2];
   ap2[ia2] = daz( GA2 * (x + y) );
   x = y - x;
   if ( ++ia2 >= NA2 )
     ia2 = 0;

   y = ap3[ia3];
   ap3[ia3] = daz( GA3 * (x + y) );
   x = y - x;
   if ( ++ia3 >= NA3 )
     ia3 = 0;


#ifndef IIR
// four feed forward comb filters

// gain
#define GC1 0.742
#define GC2 0.733
#define GC3 0.715
#define GC4 0.697

   yout = 0;

   yout += x + GC1 * cf1[ic1];
   cf1[ic1] = x;
   if ( ++ic1 >= NC1 )
     ic1 = 0;

   yout += x + GC2 * cf2[ic2];
   cf2[ic2] = x;
   if ( ++ic2 >= NC2 )
     ic2 = 0;

   yout += x + GC3 * cf3[ic3];
   cf3[ic3] = x;
   if ( ++ic3 >= NC3 )
     ic3 = 0;

   yout += x + GC4 * cf4[ic4];
   cf4[ic4] = x;
   if ( ++ic4 >= NC4 )
     ic4 = 0;

#else

// four recursive comb filters

// gain
#define GC1 0.7
#define GC2 0.7
#define GC3 0.7
#define GC4 0.7

   yout = 0.0;

   y = cf1[ic1];
   cf1[ic1] = daz( x + GC1 * y );
   if ( ++ic1 >= NC1 )
     ic1 = 0;
   yout += y;

   y = cf2[ic2];
   cf2[ic2] = daz( x + GC2 * y );
   if ( ++ic2 >= NC2 )
     ic2 = 0;
   yout += y;

   y = cf3[ic3];
   cf3[ic3] = daz( x + GC3 * y );
   if ( ++ic3 >= NC3 )
     ic3 = 0;
   yout += y;

   y = cf4[ic4];
   cf4[ic4] = daz( x + GC4 * y );
   if ( ++ic4 >= NC4 )
     ic4 = 0;
   yout += y;

#endif

   // IIR LP filter 3000 Hz
   xv0 = xv1;
   xv1 = yout/6;
   yv0 = yv1;
   yout = yv1 = daz( xv0 + xv1 + 0.668 * yv0 );

   return yout;

}






More information about the Linux-audio-dev mailing list