Hi Experts.

I am Physics student, and i wanna write referat about Fourier transformations, also about FFT 1D real case.
Hope this is best place for ask this, and here are best experts.

I wanaa demonstrate how diverse window functions changes measured spectrum,
how much CPU ressources take diverse FFT algorithms ...

Yet i understand [i hope so] how works windowing .

Is somewhere available copy-paste self contained C example functions or makros for diverse FFT algorithms
FFT, QFT, Goertzel, radix-2, radix-4, split-radix, mixed-radix ... ?

Which variables in FFT function must/should be defined as static, register ... for best performance ?
What typical comes in to FFT function ? Pointer to already windowed array of samples ?
What return FFT ?
What exact physical dimensions return FFT , if input function dimensions was - voltage depends from (time) U=U(t) ?
How from ...1024 or 2048 or 4096... FFT return values  i calculate power magnitudes for all bands,
and finally values for visual 10-20 hopping bars, like in Winamp , XMMS , QMMP ... ?

If i exact know my FFT window size [for example 4096 samples] and window type , and it will be constant forever,
is it possible to calculate window(,sine,cosine,) and store all values in constant array,
so that in runtime it do not need be calculated , but i can just  take values form array ?

I have google_d about FFT and have found such proggie [see below]
I have it little bit remixed , i generate pure sine frekwenz = 796.7285 HZ ,
and in output file i got so what :

[ 71] 764.4287 Hz: Re= 0.0000000011142182 Im= 0.0000002368905824 M= 0.0000002368932028
[ 72] 775.1953 Hz: Re= 0.0000000011147694 Im= 0.0000003578625618 M= 0.0000003578642981
[ 73] 785.9619 Hz: Re= 0.0000000011164234 Im= 0.0000007207092628 M= 0.0000007207101275
[ 74] 796.7285 Hz: Re=-0.0000022785007614 Im=-0.5000000048748561 M= 0.5000000048800476
[ 75] 807.4951 Hz: Re= 0.0000000011098065 Im=-0.0000007304711756 M= 0.0000007304720186
[ 76] 818.2617 Hz: Re= 0.0000000011114605 Im=-0.0000003676273975 M= 0.0000003676290776
[ 77] 829.0283 Hz: Re= 0.0000000011120118 Im=-0.0000002466579503 M= 0.0000002466604569
...
...
...
[4019] 43270.9717 Hz: Re= 0.0000000011120118 Im= 0.0000002466579503 M= 0.0000002466604569
[4020] 43281.7383 Hz: Re= 0.0000000011114605 Im= 0.0000003676273975 M= 0.0000003676290776
[4021] 43292.5049 Hz: Re= 0.0000000011098065 Im= 0.0000007304711756 M= 0.0000007304720186
[4022] 43303.2715 Hz: Re=-0.0000022785015510 Im= 0.5000000048748419 M= 0.5000000048800334
[4023] 43314.0381 Hz: Re= 0.0000000011164234 Im=-0.0000007207092628 M= 0.0000007207101275
[4024] 43324.8047 Hz: Re= 0.0000000011147694 Im=-0.0000003578625618 M= 0.0000003578642981
[4025] 43335.5713 Hz: Re= 0.0000000011142182 Im=-0.0000002368905824 M= 0.0000002368932028

Where
43303.2715 + 796.7285 = 44100 or 44100 - 43303.2715 = 796.7285
Why Frequency 796.7285 is mirrored as Frequency 43303.2715 , and magnitude for both Frequencies is divided by 2 ????
Is here way direct calculate full magnitude and without Frequency mirroring , in band 0 Hz ... FSampl/2 ONLY ,
and not in full band - 0 Hz ... FSampl ??
In this case - how do i calculate corresponding frequency of each band that returns FFT, if sample frequency is 32K, 44K or 48K ?

Pleaz do not point me to FFTW[3] and such libs , i must self write/combine code .
Except FFTW has best short self contained 1D functions for copy-paste :)

Each pointer and example is welcomed.
Tnx in advance @ all.


Alfs Kurmis.




====



#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <math.h>

#define BUFFER 4096 //2048
//#define BUFFER 256
# define M_PI_LD        3.1415926535897932384626433832795029L  /* pi */
//void readwave(const char *filename, double *tr);
short FFT(short int dir, long m, double *x, double *y);

double fstep;

int main (int argc, char *argv [])
{
  int i;
  double f = 0.0;
  double amplitude = 0.;   double  samplerate = 44100., frekwenz=796.7285; double xarg=0. , argplus = 0. , pti ;
  double real[BUFFER], img[BUFFER];
//  ====  =====

  argplus = ( frekwenz *2.0*M_PI )/samplerate;
  //printf("Reading %d bytes from %s.\r\n", BUFFER, argv[1]);
   for(i=0;i<BUFFER;i++)
    {  //  xarg=0.0;  argplus=0.2;   floarArg =0.0001;
       pti = sin ( xarg ) /* * 32767.0*/ ;
       /*if ( kante>0 ) { if( pti > 0.0 ){ pti = 23767.0; }else{pti = -23767.0;}  }  /**/
       xarg = xarg +argplus;//+floarArg;
         if ( xarg > (4.0*M_PI) ) xarg = xarg - (4.0*M_PI);
       real[i] = pti;
    }
  printf("F=  %7.2f Hz \n\n", (samplerate*argplus)/(2*M_PI) );

  memset(img, 0, sizeof(img)); /* Fill all the imaginary parts with zeros */
   //fstep = (double) samplerate / (double) (BUFFER*2);
   fstep = (double) samplerate / (double) (BUFFER);
   printf("Frequency step : %10.6f\r\n", fstep);

   FFT(1, /*11*/ 12, real, img); /* Fast Fourier Transform with 2^11 bins */
   // FFT(1,  7, real, img); /* Fast Fourier Transform with 2^11 bins */

  /* Write fourier transformed data to stdio */
  i = 0;
  while(i < BUFFER)
  {
    amplitude = sqrt((real[i]*real[i]) + (img[i]*img[i]));
    //printf("(%4d) %.2f Hz: Re=%f Im=%f P=%f\r\n", i, f, real[i], img[i], amplitude);
    printf("[%4d] %8.4f Hz: Re=%22.16f  Im=%22.16f  M=%22.16f\n", i, f, real[i], img[i], amplitude);
    i++;
    f += fstep;
  }

return 0 ;
} // main


/*
   This computes an in-place complex-to-complex FFT
   x and y are the real and imaginary arrays of 2^m points.
   dir =  1 gives forward transform
   dir = -1 gives reverse transform
*/
short FFT(short int dir, long m, double *x, double *y)
{
   long n,i,i1,j,k,i2,l,l1,l2;
   double c1,c2,tx,ty,t1,t2,u1,u2,z;

   /* Calculate the number of points  N = M ^2 */
   n = 1;    for (i=0;i<m;i++)  n *= 2;
                  printf("FFT -->> (n) 2 ^ %ld =  %ld\n", m, n);
   /* Do the bit reversal */
   i2 = n >> 1;
   j = 0;
   for (i=0;i<n-1;i++) {
      if (i < j) {
         tx = x[i];         ty = y[i];
         x[i] = x[j];       y[i] = y[j];
         x[j] = tx;         y[j] = ty;
      }
      k = i2;
      while (k <= j) {
         j -= k;
         k >>= 1;
      }
      j += k;
   } // for (i=0;i<n-1;i++)

   /* Compute the FFT */
   c1 = -1.0;
   c2 = 0.0;
   l2 = 1;
   for (l=0;l<m;l++) {
      l1 = l2;
      l2 <<= 1;
      u1 = 1.0;
      u2 = 0.0;
      for (j=0;j<l1;j++) {
         for (i=j;i<n;i+=l2) {
            i1 = i + l1;
            t1 = u1 * x[i1] - u2 * y[i1];  t2 = u1 * y[i1] + u2 * x[i1];
            x[i1] = x[i] - t1;             y[i1] = y[i] - t2;
            x[i] += t1;                    y[i] += t2;
         }
         z =  u1 * c1 - u2 * c2;
         u2 = u1 * c2 + u2 * c1;
         u1 = z;
      }
      c2 = sqrt((1.0 - c1) / 2.0);
      if (dir == 1)
         c2 = -c2;
      c1 = sqrt((1.0 + c1) / 2.0);
   }

   /* Scaling for forward transform */
   if (dir == 1) {
      for (i=0;i<n;i++) {
         x[i] /= n;    y[i] /= n;
      }
   }
  
   return(1); //return(TRUE);
}










----