On Sat, 2006-01-28 at 13:21 +0100, Carlo Capocasa
wrote:
Only two
values are enough to mathematically reproduce
an exact waveform; even more precise than you can sample it.
Like vector graphics! So if that's the case say, why do we still have
MP3? Why don't we just convert whatever sound files we have into
mathematical formulae and have players to convert them to sound at any
sampling rate?
To quote a friend:
(tanh(sin(2*pi*(tanh(((sin(2*pi*(t+1/16)+sin(2*pi*(t+1/16)+
sin(2*pi *(t+1/16)+sin(2*pi*(t+1/16))/2)/2))+1)-2)*2)+1)*8)*
(tanh(((sin(2*pi *(t+1/16)+sin(2*pi*(t+1/16)+sin(2*pi*(t+1/
16)+sin(2*pi*(t+1/16))/2) /2))+1)-2)*2)+1)*6*(tanh(((abs(
sin(2*pi*t/90-sin(2*pi*t/45)/2))-1) *2)+1)+1))/2*tanh(sin(2*
pi*t/180)*20)+(sin(2*pi*t*f*2^((2*(int(cos (pi*int(t*4)/2)+
cos(pi*int(t*4)/4)))-24)/12)+(sin(2*pi*t*(f+5)*2^((2 *(int(
cos(pi*int(t*4)/2)+cos(pi*int(t*4)/4)))-36)/12)))*(1-2*abs(1-
t %0.5))*8*(tanh(((sin(2*pi*t/180-sin(2*pi*t/90)/2)-1)*2)+1)+
1)) *sin(2*pi*t*2+abs(sin(2*pi*t*2+abs(sin(2*pi*t*2)*0.5))))/
16+sin(2 *pi*t*f*2^((2*(int(cos(pi*int(t*4)/2)+cos(pi*int(t*4
)/4)))-36)/12) +(sin(2*pi*t*(f+5)*2^((2*(int(cos(pi*int(t*4)/
2)+cos(pi*int(t*4) /4)))-48)/12)))*(1-2*abs(1-t%0.5))*4)*
sin(2*pi*t*2+abs(sin(2*pi*t *2+abs(sin(2*pi*t*2)*0.5))))/2)*
tanh(sin(2*pi*t/180)*20)+(tanh ((sin(2*pi*t*f*2^((2*(int(
cos(pi*int((t-6/8))/2)+sin(pi*int((t -6/8))/8)))-0)/12)+sin(2*
pi*t*5)/2) *(tanh(cos(2*pi*(t-2/8))*5) +1)+sin(2*pi*t*f*2^((2*
(int(cos(pi*int((t+6/8))/2)+sin(pi*int((t +6/8))/8)))-0)/12)+
sin(2*pi*t*5)/2)*(tanh(cos(2*pi*(t+2/8))*5)+1)) *(tanh(sin(2*
pi*t/180)*2)/4+sin(2*pi*t/180-sin(2*pi*t/180))*0.78)) /4+
tanh((sin(2*pi*t*(f+1.2)*2^((2*(int(cos(pi*int((t-6/8))/2)+
sin(pi*int((t-6/8))/8)))-0)/12)+sin(2*pi*t*5)/2)*(tanh(cos(2*
pi*(t-2/8))*5)+1)+sin(2*pi*t*(f+1.2)*2^((2*(int(cos(pi*int((t+
6/8)) /2)+sin(pi*int((t+6/8))/8)))-0)/12)+sin(2*pi*t*5)/2)*
(tanh(cos(2 *pi*(t+2/8))*5)+1))*(tanh(sin(2*pi*t/180)*2)/4+
sin(2*pi*t/180 -sin(2*pi*t/180))*0.78))/8)/5)*0.9
f=440
Also audible as an mp3 at:
http://www.mikseri.net/elektrojaenis
(It's one of the songs, just press the download link above the formula)
A bit OT though, as it's made with Goldwave in windows
Hi Sampo. Thanks for the sounds to accompany the math. It helps you to
appreciate how complex computers are, and the computations that are required
to produce something quite simple.
BTW: I downloaded all the other tunes while at the site. Never one to miss
some free music, and you never know what little gems you are going to find.
Many thanks for the link. Nigel.